Home
Class 12
MATHS
int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin...

`int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx is equal to

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx