Home
Class 12
MATHS
Statement 1: If A=([a(i j)])(nxxn) is s...

Statement 1: If `A=([a_(i j)])_(nxxn)` is such that `( a )_(i j)=bar (a_(j i)),AAi ,ja n dA^2=O ,` then matrix `A` null matrix. Statement 2: `|A|=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=bar (a_(j i)),AAi ,j and A^2=O , then Statement 1: Matrix A null matrix. Statement 2: |A|=0.

If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=bar (a_(j i)),AAi ,j and A^2=O , then Statement 1: Matrix A null matrix. Statement 2: |A|=0.

Statement 1: If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=a_(j i),AAi ,ja n dA^2=O , then matrix A null matrix. Statement 2: |A|=0.

Statement 1: If A=([a_(ij)])_(n xx n) is such that (a)_(ij)=bar(a_(ji)),AA i,jandA^(2)=O, then matrix A null matrix.Statement 2:|A|=0

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

A is a 2xx2 matrix, such that A={:[(a_(ij))]:} , where a_(ij)=2i-j+1 . The matrix A is

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn) . Statement 2: The inverse of singular square matrix does not exist.

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn) . Statement 2: The inverse of singular square matrix does not exist.