Home
Class 11
MATHS
Let f(x^3) = x^4 + x^5 + x + 1, then the...

Let `f(x^3) = x^4 + x^5 + x + 1`, then the value of `f(8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = x^5 + 2x^3 + 3x + 4 then the value of 28 d/(dx) (f^(-1)(x)) at x = -2 is

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Let f(x)=(ax)/(x+1), x ne1 , then the value of 'a' for which f[f(x)]=x is

Let [x] denot the greatest integer le x . If f (x)= [x] and g(x)=|x| then the value of f(g((8)/(5)))-g(f(-(8)/(5))) is

Let f(x)=x^(5)+2x^(3)+3x+4 then the value of 28(d)/(dx)(f^(-1)) at x=-2 is

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

Let f(x)=x^(2)-x-3=0 .Given f(a)=0 ; then the value of (a^(3)+1)/(a^(5)-a^(4)-a^(3)+a^(2)) equals