Home
Class 11
MATHS
If x sqrt(1 + y) + y sqrt(1 + x) = 0, th...

If `x sqrt(1 + y) + y sqrt(1 + x) = 0,` then prove that `dy/dx = - (1 + x)^(-2).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If quad sqrt(1+y)+y sqrt(1+x)0,-1

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

If sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - y) prove that (dy)/(dx) = (sqrt(1 - y^2))/(sqrt(1-x^2)) .

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))