Home
Class 12
MATHS
Prove that sintheta+sin3theta+sin5theta+...

Prove that `sintheta+sin3theta+sin5theta+.....+sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

Prove that sin theta+sin3 theta+sin5 theta+....+sin(2n-1)theta=(sin^(2)n theta)/(sin theta)

sintheta+sin7theta=sin4theta

Prove that, sintheta+sin2theta+sin3theta+ . . .sinntheta=(sin""(ntheta)/(2)"sin"(n+1)/(2)theta)/("sin"(theta)/(2)) for all ninN .

The value of sintheta + sin3theta +sin5theta + "….."+ sin(2n-1)theta is

Solve: 4sintheta sin2theta sin4theta = sin 3theta

Prove sin(180-theta)=sintheta

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

Prove that sintheta+sin3theta+sin5theta+sin7theta=4costhetacos2thetasin4theta

Solve the equation : sintheta+sin3theta+sin5theta=0