Home
Class 12
MATHS
lim(x->0)((1+x)^4-1)/x...

`lim_(x->0)((1+x)^4-1)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1+x)^(4)-1)/(x)

Evaluate : lim_(x rarr 0)((1+x)^4-1)/x .

Evalvate lim_(xrarr0)((1+x)^(4)-1)/(x).

The value of lim_(x to 0)(e^(4x)-1)/x is :

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x→0) (√(x+1)−1)/x

Evaluate lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^((1)/(4))-(1-x)^((1)/(5)))/(x)

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :