Home
Class 11
MATHS
x=t cost, y=t+sin t. Then (d^2 x)/(dy^2)...

`x=t cost, y=t+sin t.` Then `(d^2 x)/(dy^2)` at `t=pi/2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

x = t cos t , y = t + sint . Then (d^2x)/(dy^2) at t = pi/2

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

If x = sin t. cos 2t, y = cost sin 2t then dy/dx at t = pi/4 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x = e^(t)sint, y =e^(t)cost then (d^2y)/(dx^2) at t = pi is