Home
Class 12
MATHS
Show that ((-1+sqrt(3)i)/2)^n+((-1-sqrt(...

Show that `((-1+sqrt(3)i)/2)^n+((-1-sqrt(3i))/2)^n` is equal to 2 when n is a multiple of 3 and 3 is equal to `-1` when n is any other positive integer.

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

((1+i sqrt(3))/(1-i sqrt(3)))^(n) is an integer,then n is

If (sqrt(3)-i)^(n)=2^(n),n in I, the set of integers, then n is a multiple of

Show that (-sqrt(-1))^(4n+3) =i , where n is a positive integer.

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

Prove that 2^(n)>1+n sqrt(2^(n-1)),AA n>2 where n is a positive integer.