Home
Class 12
MATHS
If omega be an imaginary cube root of u...

If ` omega` be an imaginary cube root of unity, show that ` 1+omega^n+omega^I2n=0`, for `n=2,4`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .

If w be an imaginary cube root of unity,show that 1+w^(n)+w^(2n)=0, for n=2,4

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If w be an imaginary cube root of unity,show that :(1)/(1+2w)+(1)/(2+omega)-(1)/(1+omega)=0

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is

If omega is an imaginary cube root of unity, then a root of equation |(x+1,omega,omega^2),(omega,x+omega^2,1),(omega^2,1,x+2)|=0,can be