Home
Class 12
MATHS
If z=2-3i show that z^2=4z+13=0 and henc...

If `z=2-3i` show that `z^2=4z+13=0` and hence find the value of `4z^3-3z^2+169.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=2-3i, then show that z^(2)-4z+13=0 .

If z=1+2i , show that z^(2)-2z+5=0 . Hence find the value of z^(3) +7z^(2)-z+16 .

If z=2-3i, value of 4z^(3)-3z^(2)+169 will be

If z=4+i sqrt(7), then find the value of z^(2)-4z^(2)-9z+91

If z = 3 + 2i , prove that z^(2) - 6z + 13 = 0 and hence deduce that 3z^(3) - 13z^(2) + 9z + 65 = 0 .

If z = -5 + 3i , find the value of (z^(4)+9z^(3)+26z^(2)-14z + 8) .

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

If z = 3-5i then show that z^3 -10z^2+58z -136=0

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If z = 3-5i then show that z^3 - 10z^2 +58z-136=0