Home
Class 12
MATHS
Show that: (x^2+y^2)^5=(x^5-10x^3y^2+5x...

Show that: ` (x^2+y^2)^5=(x^5-10x^3y^2+5xy^4)^2+(5x^4-10x^2y^3+y^5)^2 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Add (2x^2+5xy+2y^2), (3x^2-2xy+5y^2) and (-2x^2+8xy+3y^2)

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y

If (4x^2-3y^2):(2x^2+5y^2)=12:19 then x:y=

If x:y=5:6, then (3x^2 - 2y^2) : (y^2 - x^2) is

The HCF and LCM of two polynomials are (x+y) and (3x^5+5x^4y+2x^3y^2-3x^2y^3-5xy^4-2y^5) respectively. If on of the polynomials is (x^2-y^2) , then the other polynomial is

If (5x+2y) : (10x+3y) = 5:9 , then (2x^2+3y^2 ):(4x^2+9y^2) =? यदि (5x+2y) : (10x+3y) = 5:9 , है, तो (2x^2+3y^2 ): (4x^2+9y^2) =?

HCF and LCM of two polynomials are (x+y) and 3x^(5) + 5x^(4)y + 2x^(3)y^(2) - 3x^(2)y^(3) - 5xy^(4) - 2y^(5) , respectively. If one of the polynomials is (x^(2) - y^(2)) . Then, the other polynomial is

Find the greatest common factor (GCF/HCF) of the following polynomials: 2x^(3)y^(2),10x^(2)y^(3)14xy( ii) 14x^(3)y^(5),10x^(5)y^(3),2x^(2)y^(2)