Home
Class 12
MATHS
Let z1=2-i ,""""z2=-2+i . Find (i) Re (...

Let `z_1=2-i ,""""z_2=-2+i` . Find (i) Re `((z_1z_2)/( bar z_1))` (ii) Im`(1/(z_1 bar z_1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=2-i,z_(2)=-2+i* Find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) (ii) Im quad ((1)/(z_(1)bar(z)_(1)))

Let z_(1)=2-i,z_(2)=-2+i find (a)Re((z_(1)z_(2))/(z_(1)))

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_(1)=2-i,quad +2=-2+i, find :Re((z_(1)z_(2))/(z_(1)))

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

If z_(1)=2-i,+2=-2+i, find :Im((1)/(z_(1)(z)_(2)))

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z_(1)=1-i,z_(2)=-2+4i, Find the Modulus of Z=(Z_(1)*Z_(2))/(bar(z)_(1))

If z_(1)=2-i,z_(2)=1+i, find |(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|

If ,z_(1)=,2-i,z_(2)=1+i find ,,|(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|