Home
Class 12
MATHS
i+i^2+i^3+i^4...

`i+i^2+i^3+i^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of following expressions: i^(49)+i^(68)+i^(89)+i^(110) (ii) i^(30)+i^(80)+i^(120) (iii) i^+i^2+i^3+i^4 (iv) i^5+i^(10)+i^(15) (v) (i^(592)+i^(590)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(576)+i^(574)) (vi) 1+i^2+i^4+i^6+i^8+doti^(20) (vii) (1+i)^6+(1-i)^3

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

Find the modulus and argument of the complex number z =(i^2 +i^3)/(i^4 +i^5)

The value of i^(0)+i^(1)+i^(2)+i^(3)+i^(4) is

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

if z = 2 + i + 4i^(2) -6i^(3) then verify that (i) (bar(z^(2)) = (barz)^(2))

Find relation in between current i_(1), i_(2), i_(3), i_(4), i_(5)" and "i_(6) .

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

Evaluate: (i^(2)+i^(4)+i^(6)+i^(7))/(1+i^(2)+i^(3))