Home
Class 12
MATHS
If 1, omega, omega^2 be three roots of 1...

If `1, omega, omega^2` be three roots of 1, show that: ` (3+omega+3omega^2)^6=64`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If 1, omega, omega^2 be three roots of 1, show that: (1-omega+omega^2)^2+(1+omega-omega^2)^2=-4

If 1, omega, omega^2 be the three cube roots of 1, then show that: (1+omega)(1+omega^2)(1+omega^4)(1+omega^5)=1

If 1, omega, omega^2 be the three cube roots of 1, then show that: (1+omega)(1+omega^2)(1+omega^4)(1+omega^8)=1

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

If omega,omega^(2) be imaginary cube root of unity then (3+3 omega+5 omega^(2))^(6)-(2+6 omega+2 omega^(2))^(3) is equal to

If 1, omega, omega^(2) are the cube roots of unity, then the value of (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8)) is