Home
Class 12
MATHS
If 1, omega, omega^2 be the three cube ...

If ` 1, omega, omega^2` be the three cube roots of 1, then show that: ` (1+omega)(1+omega^2)(1+omega^4)(1+omega^8)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^2 be the three cube roots of 1, then show that: (1+omega)(1+omega^2)(1+omega^4)(1+omega^5)=1

If 1, omega, omega^(2) are the cube roots of unity, then the value of (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8)) is

If 1, omega, omega^2 be three roots of 1, show that: (1-omega+omega^2)^2+(1+omega-omega^2)^2=-4

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If 1, omega, omega^2 be the cube roots of unity, then the value of (1 - omega + omega^2)^(5) + (1 + omega - omega^2)^5 is :

If 1, omega, omega^2 be three roots of 1, show that: (3+omega+3omega^2)^6=64