Home
Class 12
MATHS
If omega be an imaginary cube root of un...

If `omega` be an imaginary cube root of unity, show that: ` 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If w be an imaginary cube root of unity,show that :(1)/(1+2w)+(1)/(2+omega)-(1)/(1+omega)=0

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If w be an imaginary cube root of unity,show that 1+w^(n)+w^(2n)=0, for n=2,4

If omega is an imainary cube root of unity,then show that (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5)=32

If omega is an imaginary cube root of unity,then find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))(1+omega^(5))......(1+omega^(3n))=

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is