Home
Class 12
MATHS
If 1/ (m+i n) - (x-iy)/(x+iy) =0, where...

If ` 1/ (m+i n) - (x-iy)/(x+iy) =0, where x,y,m,n` are real and `x+iy!=0 and m+i n!=0`, prove that `m^2+n^2=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If x+iy=sqrt((1+i)/(1-i)), prove that x^(2)+y^(2)=1

Let f(x)=x^((m)/(n)) for x in R where m and n are integers,m even and n odd and '0

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

If ((1 - i)/(1+ i))^(100) = x + iy then the value of (x, y) is:

If ((1+i)/(1-i))^(2)=x+iy, find x+y

lim_(x rarr0)(cos(mx))^((n)/(x^(2))) is : (where m,n in N)