Home
Class 12
MATHS
If A=[1-1 2 3] , B=[2 1 1 0] , prove tha...

If `A=[1-1 2 3]` , `B=[2 1 1 0]` , prove that `(A+B)^2!=A^2+2A B+B^2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,-12,3]],B=[[2,11,0]], prove that (A+B)^(2)!=A^(2)+2AB+B^(2)

If A=[(2,1),(1,0)],B=[(1,-1),(2,3)] , verify that : (A+B)^(2)!=A^(2)+2AB+B^(2)

If A=[[2,3] , [0,1]] and B=[[3,4] , [2,1]] then prove that (AB)'=B'A'

If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB , then

If A=[[1,-1],[2,-1]] , B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) ,then find the values of a and b

If A= [[2,4,-1],[-1,0,2]], B=[[3,4],[-1,2],[2,1]] , Show that (AB)'=B'A' .

If A=[[1,-1],[2,-1]],B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) , the value of a+b is

If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]] , then (B^(-1)A^(-1))^(-1)=

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=