Home
Class 12
MATHS
If A=[1 0 2 0 2 1 2 0 3] , prove that A^...

If `A=[1 0 2 0 2 1 2 0 3]` , prove that `A^3-6A^2+7A+2I=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,20,2,12,0,3]], prove that A^(3)-6A^(2)+7A+2I=0

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A[(1,0,2),(0,2,1),(2,0,3)] and A^(3)-6A^(2)+7A+kI_(3)=O find k.

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] and A^(3)-6A^(2)+7A+kI_(3)=O , find k.

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

A = [[1,0,20,2,12,0,3]] and A ^ (2) -6A ^ (2) + 7A + kI_ (3) = 0

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

The mtrix A is given by A=[[1,2-3,0]]. Prove that A^(2)+3A+5I=[[3,8-12,-1]]