Home
Class 12
MATHS
Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2...

Show that ` |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Show without expanding that |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=|[1,b c, b+c],[1,c a, c+a],[1,a b, a+b]|

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

Show that a-b is a factor of |[1,a,a^(2)],[1,b,b^(2)],[1,c,c^(2)]|