Home
Class 12
MATHS
Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^...

Prove that ` |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[a,a^2,1+pa^3] , [b,b^2,1+pb^3] , [c,c^2,1+pc^3]|=(1+pabc)(a-b)(b-c)(c-a)

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

det[[1,x,x^(3)1,b,b^(3)1,c,c^(3)]]=0;b!=c

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)

Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)