Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that `|1 1+p1+p+q2 3+2p4+3p+2q3 6+3p 10+6p+3q|=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants.Prove that det[[2,3+2p,1+3p+2q3,6+3p,10+6p+3q]]=1

Using properties of determinants,prove the det[[1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=1

Show that: |11+p1+p+q23+2p1+3p+2q36+3p1+6p+3q|=1

Show that det[[1,1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=

Using the property of determinants and without expanding prove that abs([p,q,r],[p^2,q^2,r^2],[p^3,q^3,r^3])=pqr(p-q)(q-r)(r-p)

What is the value of p if (p)/(2)+3q=6 and 2p-2q=10 ?

{:(2x + 3y = 9),((p + q)x + (2p - q)y = 3(p + q+ 1)):}

In a G.P. if (2p)^(t h) term is q^2a n d(2q)^(t h) term is p^2 where q in N , then its (p+q^(t h)) term is p q b. p^2q^2 c.1/2p^3q^3 d. 1/4p^3q^3

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q