Home
Class 12
MATHS
Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],...

Prove that `|[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find the value of lambda

Prove that |[1,1,1] , [a,b,c] ,[a^2-bc, b^2-ca, c^2-ab]|=0

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

Prove that |[1,a,bc] , [1,b,ca], [1,c,ab]|=|[1,a,a^2] , [1,b,b^2] , [1,c,c^2]|

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by