Home
Class 12
MATHS
Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, ...

Prove `|[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab, -ab]|`=`(ab+bc+ca)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab) are coplanar, where none of a,b and c is zero then

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Show that |[0,c,b] , [c,0,a] , [b,a,0]|^2=|[b^2+c^2, ab, ac] , [ab, c^2+a^2, bc] , [ac, bc, a^2+b^2]|