Home
Class 12
MATHS
Evaluate the following: |costheta, -sin...

Evaluate the following: ` |costheta, -sin theta],[sin theta, cos theta]| `

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of |[cos theta,-sin theta],[sin theta,cos theta]|

costheta-cos2theta=sin3theta

Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

If f(theta)=|[cos^(2)theta,cos theta sin theta,-sin theta],[cos theta sin theta,sin^(2)theta,cos theta],[sin theta,-cos theta,0]| , then f((pi)/(12))

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] "then " f (pi/7) is

Simplify: cos theta[cos theta sin theta-sin theta cos theta]+sin theta[sin theta-cos theta cos theta sin theta]

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………