Home
Class 12
MATHS
Evaluate the following: |[1,1,1],[alpha...

Evaluate the following: ` |[1,1,1],[alpha, beta, gamma],[beta gamma, gama alpha, alpha beta]| `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

1,1,1alpha, beta, gammabeta gamma, gamma alpha, alpha beta] |

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

Prove that, gammaalpha ^ (2), beta ^ (2), gamma ^ (2) beta + alpha, gamma + alpha, alpha + beta] | = (beta-gamma) (gamma-alpha) (alpha-beta) ( alpha + beta + gamma)

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

alpha , beta , gamma are the roots of the equation x^(3)-3x^(2)+6x+1=0 . Then the centroid of the triangle whose vertices are (alpha beta,1/(alpha beta)) , (beta gamma, 1/(beta gamma)) , (gamma alpha,1/(gamma alpha)) is