Home
Class 12
MATHS
[[a,b,ax+by],[b,c,bx+cy],[ax+by,bx+cy,0]...

`[[a,b,ax+by],[b,c,bx+cy],[ax+by,bx+cy,0]]=(b^2-ac)(ax^2+2bxy+cy^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[ Prove that: ,b,ax+bya,c,bx+cyax+by,bx+cy,0]]=(b^(2)-ac)(ax^(2)+2bxy+cy^(2))

Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x^2+2b x y+c y^2) .

[[a, b, ax + byb, c, bx + cyax + by, bx + cy, 0]] = (b ^ (2) -ac) (ax ^ (2) + 2bxy + cy ^ (2))

If a>0 and discriminant of ax^(2)+2bx+c is negative,then det[[a,b,ax+bb,c,bx+c]],+ve b.(ac-b)^(2)(ax^(2)+2bx+c) c.-ve d.0

int (ax+b)/(ax^2+2bx+c) dx

If b^2 -aclt0 and alt 0, then thevalue of the determinant |(a,b,ax+by),(b,c,bx+cy),(ax + by,bx + cy,0)| is

If a gt 0 and discriminant of ax^(2) + 2bx + c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| , is

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1. Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

det[[ Prove that ax-by-cz,ay+bx,cx+azay+bx,by-cz-ax,bz+cycx+az,bz+cy,cz-ax-by]]=(x^(2)+y^(2)+z^(2))(a^(2)+b^(2)+c^(2))(ax+by+cz)