Home
Class 12
MATHS
Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c ...

Prove that: `2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

det[[ Prove that ,a,b^(2),ca^(2),b^(2),c^(2)a+c,c+a,a+b]]=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

Prove that: |(b+c)^(2)a^(2)a^(2)b^(2)(c+a)^(2)b^(2)c^(2)c^(2)(a+b)^(2)|=2abc(a+b+c)^(3)

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)