Home
Class 12
MATHS
Show without expanding at any stage that...

Show without expanding at any stage that: `| (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)|`=2 `|(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)| `

Promotional Banner

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

If /_\ = |[sinalpha, cosalpha, sin(alpha+delta)],[sinbeta, cosbeta, sin(beta+delta)],[singamma, cosgamma, sin(gamma+delta)]| then prove that /_\ is independent of alpha, beta, gamma and delta.

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .