Home
Class 12
MATHS
Prove that: .^nCrxx^rCs=^nCsxx^(n-s)C(r-...

Prove that: `.^nC_rxx^rC_s=^nC_sxx^(n-s)C_(r-s)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

Prove that ^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)

Prove that ""^(n)C_(r ) ""^(r ) C_(s)= ""^(n)C_(s) ""^(n-s)C_(r-s)

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

Prove that sum_(r=0)^(n)nC_(r)3^(r)=4^(n)

Prove that nC_(r)+n-1C_(r)+n-2C_(r)+.......+rC_(r)=n+1C_(1)

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

Prove that: . n ^C_0+2.^nC_1+…2^n.^nC_n=3^n for every natural number n.

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)