Home
Class 10
MATHS
if x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2 t...

if `x^2+y^2=t-1/t` and `x^4+y^4=t^2+1/t^2` then `x^3y(dy)/(dx)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2=t+1/t and x^4+y^4=t^2+1/t^2 then (dy)/(dx)=

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2 then prove that x^3ydy/dx=1 .

If x^2+y^2=t -1/t and x^4+y^4=t^2+1/t^2 then (dy)/ (dx) is equal to a) 1/(x^2y^3) b) 1/(xy^3) c) 1/(x^2y^2) d) 1/(x^3y)

If x^2+y^2= t-1/t and x^4+y^4 = t^2+1/t^2 ,show that , x^3y (dy)/(dx) = 1 .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=