Home
Class 12
MATHS
If o be the sum of odd terms and E that ...

If `o` be the sum of odd terms and `E` that of even terms in the expansion of `(x+a)^n` prove that: `O^2-E^2=(x^2-a^2)^n` (ii) `4O E=(x+a)^(2n)-(x-a)^(2n)` (iii) `2(O^2+E^2)=(x+a)^(2n)+(x-a)^(2n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If o be the sum of odd terms and E that of even terms in the expansion of (x+a)^(n) prove that: O^(2)-E^(2)=(x^(2)-a^(2))^(n)( (i) 4OE=(x+a)^(2n)-(x-a)^(2n)( iii) 2(O^(2)+E^(2))=(x+a)^(2n)+(x-a)^(2n)

If A be the sum of odd terms and B the sum of even terms in the expnsion of (x+a)^n, show that 4AB= (x+a)^(2n)-(x-a)^(2n)

If the sum of odd terms and the sum of even terms in the expansion of (x+a)^(n) are p and q respectively then p^(2)-q^2=

n th term in the expansion of (x+(1)/(x))^(2n)

The number of terms in the expansion of (1+2x+x^2)^n is :

In the expansion of (x+a)^(n) if the sum of odd terms is P and the sum of even terms is Q then (a)P^(2)-Q^(2)=(x^(2)-a^(2))^(n)(b)4PQ=(x+a)^(2n)-(x-a)^(2n)(c)2(P^(2)+Q^(2))=(x+a)^(2n)+(x-a)^(2n) (d)none of these

If A and B are the sums of odd and even terms respectively in the expansion of (x+a)^(n) tehn (x+a)^(2n)-(x-a)^(2n)=