Home
Class 11
MATHS
The pole of the line lx+my+n=0 with resp...

The pole of the line `lx+my+n=0` with respect to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The pole of the line lx+my+n=0 with respect to the parabola y^(2)=4ax, is

The pole of the line lx+my+n=0 with respect to the parabola y^(2)=4ax, is

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .