Home
Class 12
MATHS
The Fibonacci sequence is defence by t1=...

The Fibonacci sequence is defence by `t_1=t_2=1, t_n=t_(n-1)+t_(n-2)(ngt2). If t_(n+1)=kt_n` then find the values of k for `n=1,2,3 and 4`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If t_(n)=an^(-1) , then find the value of n, given that a=2,r=3 and t_(n)=486 .

The 5th terms of the sequence defined by t_(1)=2,t_(2)=3 and t_(n)=t_(n-1)+t_(n-2) for nge3

If t_(n)=(n+2)/((n+3)!) then find the value of sum_(n=5)^(20)t_(n)

The fifth term of the sequence for which t_1= 1, t_2 = 2 and t_(n + 2) = t_n + t_(n + 1) is

If t_(n)=(1+(-2)^(n))/(n-1) , find t_(6)-t_(5)

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13); then find the value of sum_(r=1)^(n)sqrt(T_(r))

If t_(n) = 1/((n+1)!) , then sum_(n=1)^(infty) t_(n)=