Home
Class 12
MATHS
If a,b,c,d be in G.P. show that (a^2+b^2...

If a,b,c,d be in G.P. show that `(a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c and d are in G.P.show that (a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))=(ab+bc+cd)^(2)

If a,b,c,d be in G.P. show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c,d are in G.P.prove that: (ab-cd)/(b^(2)-c^(2))=(a+c)/(b)

If a,b,c,d are in G.P.show that: (ab+bc+cd)^(2)=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))

If a,b,c,d are in G.P.prove that: (a^(2)+b^(2)),(b^(2)+c^(2)),(c^(2)+d^(2)) are in G.P.(a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.(1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.(a^(2)+b^(2)+c^(2)),(ab+bc+cd),(b^(2)+c^(2)+d^(2))

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.