Home
Class 12
MATHS
If pth, qth and rth terms of an A.P. and...

If pth, qth and rth terms of an A.P. and G.P. are both a,b and c respectively, show that `a^(b-c).b^(c-a).c^(a-b)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If p^(th),q^(th), and r^(th) terms of an A.P.and G.P. are both a,b and c respectively show that a^(b-c)b^(-a)c^(a-b)=1

If p^(th),q^(th) and r^(th) terms of an A.P and G.P are both a,b and c respectively then show that a^(b-c).b^(c-a).c^(a-b)=1

If the pth, qth and rth terms of a G.P. are a,b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If pth,qth,and rth terms of an A.P.are a,b,c, respectively,then show that (a-b)r+(b-c)p+(c-a)q=0

If pth,qth and rth terms of an A.P.are a,b,c respectively,then show that (i) a(q-r) +b(r- p) +c(p-q)=0

The pth, qth and rth terms of an A.P. are a, b and c respectively. Show that a(q – r) + b(r-p) + c(p – q) = 0

If pth, qth and rth terms of an A.P. are a,b,c, respectively, then show that (i) a(q-r)+b(r-p)+c(p-q)=0 (ii) (a-b)r+(b-c)p+(c-a)q=0

If the pth, qth and rth terms of a G.P.are a,b,c respectively,prove that: a^((q-r))C()b^((r-p))dot c^((p-q))=1

If the pth, qth and rth terms of an A.P. are a,b,c respectively , then the value of a(q-r) + b(r-p) + c(p-q) is :