Home
Class 12
MATHS
If a,b,c are in G.P., then show that : (...

If a,b,c are in G.P., then show that : `(a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)`

Answer

Step by step text solution for If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P., then show that a(b-c)^2=c(a-b)^2

If a,b,c are in GP, prove that (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2) .

If a, b, c are in G.P. then show that b^(2 ) = a.c.

If a,b,c,d be in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

If a, b, c are in G.P., then prove that (1)/(a^(2)-b^(2))-(1)/(b^(2)-c^(2))=-(1)/(b^(2)) . [Hint : Put b = ar, c = ar^(2) ]

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.

If a,b,c,d are in G.P.,prove that (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.and (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in