Home
Class 12
MATHS
if 3/(2+cos theta+i sin theta)=a+ib then...

if `3/(2+cos theta+i sin theta)=a+ib` then prove that `a^2+b^2=4a-3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

if (3)/(2+cos theta+i sin theta)=a+ib then (a-2)^(2)+b^(2) equals to:

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

If (3)/(2+cos theta+i sin theta)=a+ib and a^(2)+b^(2)=a lambda-3, then the value of lambda, is

If sin(pi cos theta)=cos(pi sin theta) ,then prove that : theta=(1)/(2)sin^(-1)(3/4)

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If a cos theta+b sin theta=m and a sin theta-b cos theta=n, prove that a^(2)+b^(2)=m^(2)+n^(2)

If cos ec theta-sin theta=a^(3),sec theta-cos theta=b^(3) then prove that a^(2)b^(2)(a^(2)+b^(2))=1

If cos ec theta-sin theta=a^(3),sec theta-cos theta=b^(3) then prove that a^(2)b^(2)(a^(2)+b^(2))=1

If a=cos theta+i sin theta and b= cos phi + i sin phi then prove that a^3/b^3+b^3/a^3=2cos3(theta-phi)