Home
Class 12
MATHS
Solve the equation z^8+1=0 and deduce th...

Solve the equation `z^8+1=0` and deduce that `cos4theta=8(costheta-cos(pi/8))(costheta-cos((3theta)/3))(costheta- cos((5pi)/8))(costheta-cot((7pi)/8))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

5cos theta+3cos(theta-(pi)/(3))+8=

int(costheta-cos2theta)/(1-cos theta)d theta=

costheta-cos2theta=sin3theta

(cos3theta+isin3theta)^5/(costheta+isintheta)^6

Solve: cos3theta+costheta=0

costheta.cos2theta.cos3theta=1/4

Solve: cos3theta+2costheta=0

Solve: costheta+cos3theta+cos5theta+cos7theta=0