Home
Class 12
MATHS
If kgt1,|z1|,k and |(k-z1barz2)/(z1-kz2)...

If `kgt1,|z_1|,k and |(k-z_1barz_2)/(z_1-kz_2)|=1`, then (A) `z_2=0` (B) `|z_2|=1` (C) `|z_2|=4` (D) `|z_2|ltk`

Promotional Banner

Similar Questions

Explore conceptually related problems

If k gt 1, |z_(1)| lt k and |(k-z_(1)barz_(2))/(z_(1)-kz_(2))|=1 , then

If z_1 and z_2 are two complex numbers such that |(barz_1-2barz_2)(2-z_1barz_2)|=1 then (A) |z_1|=1, if |z_2|!=1 (B) |z_1|=2, if |z_2|!=1 (C) |z_2|=2, if |z_1|!=1 (D) |z_2|=1, if |z_1|!=2

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

If |z|= maximum {|z+2|,|z-2|} , then (A) |z- barz | = 1/2 (B) |z+ barz |=4 (C) |z+ barz |= 1/2 (D) | z-barz =2

If z_1,z_2,z_3 be the vertices A,B,C respectively of triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|=|z_1-z_2| then C= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4