Home
Class 12
MATHS
Let the complex numbers z of the form x+...

Let the complex numbers z of the form `x+iy` satisfy arg` ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3`. Then the ordered pairs `(x,y)` are (A) `(4- 4/sqrt(5), 1+2/sqrt(5))` (B) `(4+5/sqrt(5),1-2/sqrt(5))` (C) `(6-1)` (D) `(0,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The complex numbers z = x + iy which satisfy the equation |(z-5i)/(z+5i)|=1 , lie on

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If |z-4/2z|=2 then the least of |z| is (A) sqrt)5)=-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

Number of z, which satisfy Arg(z-3-2i)=(pi)/(6) and Arg(z-3-4i)=(2 pi)/(3) is/are :

The locus of a complex number z satisfying |z-(1+3i)|+|z+3-6i|=4

Let z be a complex number and i=sqrt(-1) then the number of common points which satisfy arg(z-1-i)=(pi)/(6) and arg((z-1-i)/(z+1-i))=(pi)/(2) is

If arg((z-3+4i)/(z+2-5i))=(5 pi)/(6), then locus of z represents .........

Let z be a complex number satisfying (3+2i) z +(5i-4) bar(z) =-11-7i .Then |z|^(2) is

The number of values of z satisfying both theequations Arg(z-1-i)=-(3 pi)/(4) and Arg(z-2-2i)=(pi)/(4) is