Home
Class 12
MATHS
If |an|lt 1 for n=1,2,3,…and 1+a1z+a2z^2...

If `|a_n|lt 1 for n=1,2,3,…and 1+a_1z+a_2z^2+…+a_nz^n=0` then z lies (A) on the circle `|z|=1/2` (B) inside the circle `|z|=1/2` (C) `outside the circle `|z|= 1/2` (D) on the chord of the circle `|z|=1/2` cut off by the line `Re[(1+i)z]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z lies on the circle |z-1|=1 , then (z-2)/z is

If z lies on the circle I z 1=1, then 2/z lies on

All the roots of equation z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2, when theta_0, theta_1, theta_2, ……theta_n epsilon R lie (A) on the line Re[(3+4i)z]=0 (B) inside the circel |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the circle |z|= 1/2

Radius of the circle |(z-1)/(z-3i)|=sqrt(2)

Prove that none of the roots of the equation z^(n) = 2(1+ z+z^2 + …...+ z^(n-1)), n gt 1 , lies outside the circle |z|=3 .

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse