Home
Class 12
MATHS
All the roots of equation z^n costgheta0...

All the roots of equation `z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2,` when `theta_0, theta_1, theta_2, ……theta_n epsilon R `lie (A) on the line `Re[(3+4i)z]=0` (B) inside the circel `|z|=1/2` (C) outside the circle `|z|= 1/2` (D) on the circle `|z|= 1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

z0is a root of the equation z^(n)cos[theta o]+z^(n-1)cos[theta1]+z^(n-2)cos theta[theta2]+......+z^(n)cos[theta[n-1]]+cos theta[n]=2 where Theta[i]in R

If |a_n|lt 1 for n=1,2,3,…and 1+a_1z+a_2z^2+…+a_nz^n=0 then z lies (A) on the circle |z|=1/2 (B) inside the circle |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the chord of the circle |z|=1/2 cut off by the line Re[(1+i)z]=0

The distance of the roots of the equation tan theta_(0) z^(n) + tan theta_(1) z^(n-1) + …+ tan theta_(n) = 3 from z=0 , where theta_(0) , theta_(1) , theta_(2),…, theta_(n) in [0, (pi)/(4)] satisfy

If tan theta+tan2 theta+tan theta.tan2 theta=1 then theta=...(n in z)

zo is one of the roots of the equation z^(n)cos theta0+z^(n-1)cos theta2+......+z cos theta(n-1)+cos theta(n)=2, where theta in R, then (A)|z0| (1)/(2)(C)|z0|=(1)/(2)

Show that there is no complex number such that |z|le1/2 and z^(n)sin theta_(0)+z^(n-1)sintheta_(2)+....+zsintheta_(n-1)+ sintheta_(n)=2 where theta,theta_(1),theta_(2),……,theta_(n-1), theta_(n) are reals and n in Z^(+) .

If sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0 , then find the minimum value of costheta_1+costheta_2+...+costheta_n .

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

z_3^2/(z_1.z_2)= (A) sec^2.cos2theta (B) costheta.sec^22theta (C) cos^2theta.sec2theta (D) sectheta.sec^22theta