Home
Class 12
MATHS
If |z|= maximum {|z+2|,|z-2|}, then (A) ...

If |z|= maximum `{|z+2|,|z-2|}`, then` (A) `|z-`barz`|`= `1/2` (B) `|z+`barz`|=4` (C) `|z+`barz`|= 1/2` (D) `|`z-barz`=2

Promotional Banner

Similar Questions

Explore conceptually related problems

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

If |z+barz|+|z-barz|=2 , then z lies on

If |z+barz|+|z-barz|=8 , then z lies on

If kgt1,|z_1|,k and |(k-z_1barz_2)/(z_1-kz_2)|=1 , then (A) z_2=0 (B) |z_2|=1 (C) |z_2|=4 (D) |z_2|ltk

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_1 and z_2 are two complex numbers such that |(barz_1-2barz_2)(2-z_1barz_2)|=1 then (A) |z_1|=1, if |z_2|!=1 (B) |z_1|=2, if |z_2|!=1 (C) |z_2|=2, if |z_1|!=1 (D) |z_2|=1, if |z_1|!=2

Find the complex number z if zbarz = 2 and z + barz=2

If |z+barz|=|z-barz| , then value of locus of z is

Conjugate of a complex no and its properties. If z, z_1, z_2 are complex no.; then :- (i) bar(barz)=z (ii)z+barz=2Re(z)(iii)z-barz=2i Im(z) (iv)z=barz hArr z is purely real (v) z+barz=0implies z is purely imaginary (vi)zbarz=[Re(z)]^2+[Im(z)]^2

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is