Home
Class 12
MATHS
Let P-=sqrt(3)e^(ipi/3), Q-=sqrt(3)e^(-p...

Let `P-=sqrt(3)e^(ipi/3), Q-=sqrt(3)e^(-pi/3) and R -=sqrt(3)e^(-ipi)`. If P,Q,R form a triangle PQR in the Argand plane, then `/_\ PQR` is (A) isosceles (B) equilateral (C) scalene (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=(2)/(sqrt(3))e^(-i(pi)/(6)),B=(2)/(sqrt(3))e^((pi)/(2)),C=(2)/(sqrt(3))e^(-(i pi pi)/(6)) be three points forming a triangle ABC in the Gaussian plane then the triangle ABC is a) equilateral b) isosceles c) scalene d Right Angled

Let P(e^(i theta_(1))),Q(e^(i theta_(2))) and R(e^(i theta_(3))) be the vertices of a triangle PQR in the Argand Plane.Theorthocenter of the triangle PQR is

Let P=(-1,0),Q=(0,0) and R=(3,3sqrt(3)) be three points.The equation of the bisector of the angle PQR

In an isosceles triangle PQR,sides QR and RP are equal and cos P+cos Q+cos R=sqrt(2) possible values(s) of cosR can be

Let P(-1,0),Q(0,0),R(3,3sqrt(3)) be three points then the equation of the bisector of the angle /_PQR is :

If P+Q=R and |P|=|Q|= sqrt(3) and |R| ==3 , then the angle between P and Q is