Home
Class 12
MATHS
If a=z1+z2+z3, b=z1+omega z2+omega^2z3,c...

If `a=z_1+z_2+z_3, b=z_1+omega z_2+omega^2z_3,c=z_1+omega^2z_2+omegaz_3(1,omega, omega^2` are cube roots of unity), then the value of `z_2` in terms of a,b, and c is (A) `(aomega^2+bomega+c)/3` (B) `(aomega^2+bomega^2+c)/3` (C) `(a+b+c)/3` (D) `(a+bomega^2+comega)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 + z_2 + z_3 = A, z_1 + z_(2)omega+ z_(3)omega^(2)= B, z_1 + z_(2) omega^(2) + z_(3) omega=C where 1, omega, omega^2 are the cube roots of unity, then

If omega is a cube root of unity, then find the value of the following: (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+comega+aomega^2)

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If arg ((z-omega)/(z-omega^(2)))=0 then prove that Re (z)=-(1)/(2)(omega and omega^(2) are non-real cube roots of unity).

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then