Home
Class 12
MATHS
if 1,alpha1, alpha2, ……alpha(3n) be the ...

if `1,alpha_1, alpha_2, ……alpha_(3n)` be the roots of equation `x^(3n+1)-1=0` and omega be an imaginary cube root of unilty then `((omega^2-alpha_1)(omega^2-alpha).(omega^2-alpha(3n)))/((omega-alpha_1)(omega-alpha_2)……(omega-alpha_(3n)))=` (A) `omega` (B) `-omega` (C) 1 (D) `omega^2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,alpha_1,alpha_2,alpha_3,.........,alpha_(3n) be the roots of the eqution x^(3n+1) - 1 =0, and w be an imaginary cube root of unity, then ((w^2-alpha_1)(w^2-alpha_2)....(w^(3n)-alpha_(3n))) /((w-alpha_1)(w2-alpha)....(w-alpha_(3n)))

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

Let omega be an imaginary root of x^(n)=1. Then (5-omega)(5-omega^(2))....(5-omega^(n-1)) is

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and omega,omega^(2) are the complex roots of unity,then omega^(2)a+omega beta)(omega alpha+omega^(2)beta)=

If 1,alpha_(1),alpha_(2),alpha_(3),alpha_(4) be the roots x^(5)-1=0 then value of -alpha_(2)(omega-alpha_(1))/(omega^(2)-alpha_(1))*(omega-alpha_(2))/(omega^(2)-alpha_(2))*(omega-alpha_(3))/(omega^(2)-alpha_(3))*(omega-alpha_(4))/(omega^(2)-alpha_(4)) is (where omega is imaginary cube root of unity)

If alpha, beta are the roots of x^(2) + px + q = 0, and omega is a cube root of unity, then value of (omega alpha + omega^(2) beta) (omega^(2) alpha + omega beta) is

If omega is an imaginary cube root of unity,then find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))(1+omega^(5))......(1+omega^(3n))=