Home
Class 12
MATHS
If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4...

If `|(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t` be n identity in x and `omega` be an imaginary cube root of unity, `(a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)=` (A) `p` (B) `2p` (C) `-2p` (D) `-p`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega is a cube root of unity, prove that (a+bomega+comega^2)/(c+aomega+bomega^2)=omega^2

If omega is a cube root of unity, then find the value of the following: (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+comega+aomega^2)

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

If 1omega,omega^(2) are the three cube roots of unity, then what is ((a omega^(6)+bomega^(4)+xomega^(2)))/((b+comega^(10)+aomega^(8))) equal to ?

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to

Let omega be the imaginary cube root of unity and (a+bomega + comega^2)^(2015) =(a+bomega^2 + c omega) where a,b,c are unequal real numbers . Then the value of a^2+b^2+c^2-ab-bc-ca equals.