Home
Class 12
MATHS
If z1,z2,z3 be the vertices of a triangl...

If `z_1,z_2,z_3` be the vertices of a triangle ABC such that `|z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2,` then `|arg, ((z_3-z_1)/(z_3-z_2))|=` (A) `pi/2` (B) `pi/3` (C) `pi/6` (D) `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3,z_4 be the vertices of a quadrilaterla taken in order such that z_1+z_2=z_2+z_3 and |z_1-z_3|=|z_2-z_4| then arg ((z_1-z_2)/(z_3-z_2))= (A) pi/2 (B) +- pi/2 (C) pi/3 (D) pi/6

If z_1,z_2,z_3 be the vertices A,B,C respectively of triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|=|z_1-z_2| then C= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

If z_(1),z_(2),z_(3) are the vertices of triangle such that |z_(1)-i|=|z_(2)-i|=|z_(3)-i| and z_(1)+z_(2)=3i-z_(3) then area of triangle is

z_(1),z_(2) and z_(3) are the vertices of a triangle ABC such that |z_(1)|=|z_(2)|=|z_(3)| and AB=AC. Then ((z_(1)+z_(3))(z_(1)+z_(2)))/((z_(2)+z_(3))^(2)) is

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

If z_(1), z_(2) and z_(3) are the vertices of a triangle in the argand plane such that |z_(1)-z_(2)|=|z_(1)-z_(3)| , then |arg((2z_(1)-z_(2)-z_(3))/(z_(3)-z_(2)))| is

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is :

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=|z_3|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2