Home
Class 12
MATHS
If a=cos (2pi)/7 + i sin (2pi)/7 ,alpha ...

If `a=cos (2pi)/7 + i sin (2pi)/7` `,alpha =a+a^2+a^4`, `beta =a^3+a^5+a^6` then `alpha, beta` are the roots of the equation

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(cos(2 pi))/(7)+i(sin(2 pi))/(7),alpha=a+a^(2)+a^(4),beta=a^(3)+a^(5)+a^(6) then alpha,beta are the roots of the equation

If a=cos((2 pi)/(7))+i sin((2 pi)/(7)),alpha=a+a^(2)+a^(2), and beta=a^(3)+a^(5)+a^(6) then alpha,beta are the roots of the equation

Let p=cos(2 pi)/(7)+i sin(2 pi)/(7) . The complex number alpha=p+p^(2)+p^(4) and beta= p^3+p^5+p^6 are roots of the quadratic equation x^(2)+ax+b=0, where a and b are real. Then value of a, b

cos ((2 pi) / (7)) + i sin ((2 pi) / (7)) and alpha = w + w ^ (2) + w ^ (4) and beta = w ^ (3) + w ^ (5) + w ^ (6)

If x cos alpha + y sin alpha = x cos beta + y sin beta = a, 0